3^(x^2)-42=1/(3^x)

Simple and best practice solution for 3^(x^2)-42=1/(3^x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^(x^2)-42=1/(3^x) equation:



3^(x^2)-42=1/(3^x)
We move all terms to the left:
3^(x^2)-42-(1/(3^x))=0
Domain of the equation: 3^x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
3^x^2-1/3^x-42=0
We multiply all the terms by the denominator
3^x^2*3^x-42*3^x-1=0
Wy multiply elements
9x^2-126x-1=0
a = 9; b = -126; c = -1;
Δ = b2-4ac
Δ = -1262-4·9·(-1)
Δ = 15912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15912}=\sqrt{36*442}=\sqrt{36}*\sqrt{442}=6\sqrt{442}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-126)-6\sqrt{442}}{2*9}=\frac{126-6\sqrt{442}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-126)+6\sqrt{442}}{2*9}=\frac{126+6\sqrt{442}}{18} $

See similar equations:

| 15x=15*3 | | 3x2+92x-7200=0 | | 6d=2/1 | | w+0.02w=9.69 | | 8+ww=12 | | -1/2+3/7y=-1/3 | | 4∣y+1∣−16=0 | | 15+9v=60 | | n/7+77=82 | | 4X=-2y+14 | | u/4+16=18 | | -6×+10=4x+12+8 | | q-23/9=6 | | 2=m/7-3 | | 3(x+9)=16 | | j/4-9=3 | | j/4-9=1 | | 19=u/3+16 | | 4y−6y−24=30 | | 5+3x=10-6x | | 7=g-6/7 | | -3=−9x | | X+0.20x=24,500 | | 6x-15=2x+9= | | X+0.10x=32,500 | | 2x+1=8x+10 | | 6y+1|2=5y | | 32-15=a | | 2x+9-9=87-9 | | 0.2(x-1.8)+x=0.2(x-0.9)-3.38 | | 20(x-1.8)+100=20(x-0.9)-338 | | 7x+8=12x+3 |

Equations solver categories